TRANSCRIPTION

Unit 3 Paper – Molecular Biology B.Sc. (H) Microbiology, III Sem

CODING AND TEMPLATE STRAND DURING TRANSCRIPTION IN PROKARYOTIC CELL

STRUCTURE

RNA polymerase: Core Enzyme + Sigma factor = Holoenzyme

Core enzyme 2α subunits, β , β' σ ---helps in recognition Holoenzyme= Core + sigma

RNA POLYMERASE FEATURES

- Starts at a <u>promoter</u> sequence, ends at <u>termination</u> <u>signal</u>
- Proceeds in 5' to 3' direction
- Forms a temporary DNA:RNA hybrid
- Has complete processivity

BACTERIAL PROMOTER STRUCTURE

Two promoter consensus sequences—the Pribnow box at -10 and the -35 sequence—are essential promoter regulatory elements.

CONSENSUS SEQUENCES

	-35		-10	+1
Gene	region		region	
A2	AATGCTTGACTCT	G T A G C G G G A A G G C G	TATAATG	CACACC- <mark>C</mark> CGC
bio	AAAACGTGTTTTT	I G T T G T T A A T T C G G T G	TAGACTT	<u> G T - - - А А <mark>А</mark> С С Т</u>
his	AGTTCTTGCTTTC	TAACGTGAAAGTGGTT	TAGGTTA	A A A G A C - <mark>A</mark> T C A
lac	CAGGCTTTACACT	TATGCTTCCGGCTCG	TATGTTG	TG-TGG- <mark>A</mark> ATT
lad	GAATGGCGCAAAA	CTTTTCGCGGTATGG-	CATGATA	G C G C C C - <mark>G</mark> G A A
leu	AAAAGTTGACATC	CGTTTTTGTATCCAG-	ТААСТСТ	A A A A G C - <mark>A</mark> T A T
recA	AACACTTGATACT	G T A T G A G C A T A C A G	ΤΑΤΑΑΤΤ	GCTTC <mark>A</mark> ACA
trp	AGCTGTTGACAAT	TAATCATCGAACTAG-	ТТААСТА	G T A C G C - <mark>A</mark> A G T
tRNA	AACACTTTACAGC	G G C C G T C A T T T G A	TATGATG	<u>с G C C C C - G C T T</u>
X1	TCCGCTTGTCT	СТА G G C C G A C T C C C	ΤΑΤΑΑΤ	CGCCTCC <mark>A</mark> TCG

Table 8.2 Escherichia coli RNA Polymerase Sigma Subunits

Subunit	Molecular Weight (Daltons)	Consensus Sequence		Function
		-35	-10	
σ ²⁸	28	TAAA	GCCGATAA	Flagellar synthesis and chemotaxis
σ ³²	32	CTTGAA	CCCCATTA	Heat shock genes
σ ⁵⁴	54	CTGGPyAPyPu	TTGCA	Nitrogen metabolism
σ ⁷⁰	70	TTGACA	TATAAT	Housekeeping genes

PROKARYOTIC PROMOTER SEQUENCE

INTERESTING FACTS

• In 1959, **Severo Ochoa** won the Nobel Prize in Physiology/Medicine. Ochoa developed a process for synthesizing RNA in vitro using polynucleotide phosphorylase.

In 2006, Roger D. Kornberg won the Nobel Prize in Chemistry. Kornberg was awarded for his studies of the molecular basis of eukaryotic transcription.

STAGES OF TRANSCRIPTION

- 1. Template recognition
 - RNA pol binds to DNA
 - DNA unwound (a melted region of approximately 14 base pairs, called the *transcription bubble*)
- 2. Initiation
- 3. Elongation
 - RNA pol moves and synthesizes RNA
 - Unwound region moves
- 4. Termination
 - RNA pol reaches end
 - RNA pol and RNA released
 - DNA duplex reforms

TRANSCRIPTION INITIATION

o <u>Steps</u>

- Formation of **closed promoter (binary) complex**
- Formation of **open promoter complex**
- **Ternary complex** (RNA, DNA, and enzyme), abortive initiation
- **Promoter clearance** (elongation ternary complex)!!! mechanism
 - First ribonucleotide becomes unpaired
 - Polymerase loses sigma
 - NusA binds
- Ribonucleotides added to 3' end

Bacterial promoters

There are several flavors of promoters

σ and α recruit RNAP to promoter DNA

SIGMA IS POSITIONED FOR DNA RECOGNITION

Copyright © 2008 Pearson Education, Inc. publishing as Pearson Benjamin Cummings. All rights reserved.

SEQUENCE OF RHO INDEPENDENT TERMINATOR

RHO INDEPENDENT TERMINATOR

EUKARYOTIC TRANSCRIPTION

- Regulation very complex
- Three different polymerases
- o Distinguished by α -amanitin sensitivity
 - Pol I—rRNA, least sensitive
 - Pol II– mRNA, most sensitive
 - Pol III– tRNA and 5R RNA moderately sensitive
- Each polymerase recognizes a distinct promoter

EUKARYOTIC RNA POLYMERASES

RNA Pol.	Location	Products	α-Amanitin Sensitivity	Promoter
Ι	Nucleolus	Large rRNAs (28S, 18S, 5.8S)	Insensitive	bipartite promoter
II	Nucleus	Pre-mRNA, some snRNAs	Highly sensitive	Upstream
III	Nucleus	tRNA, small rRNA (5S), snRNA	Intermediate sensitivity	Internal promoter and terminator

EUKARYOTIC PROMOTER

Three eukaryotic promoter consensus sequence elements. The TATA box and the CAAT box are common; the presence of the upstream GC-rich box is more variable.

PROMOTER ELEMENTS

